II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER - 2022

NUMERICAL METHODS AND COMPLEX VARIABLES

(Common for ECE, EEE)
Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

								BL	CO	Max. Marks
UNIT-I										
1	a)	Find a real root of the equation $x \log _{10} x=1.2$ by Regula-Falsi method correct to four decimal places.						L3	CO 2	7 M
	b)	From the following data estimate the number of students who obtained marks between 45 and 50						L4	CO4	7 M
		Marks	30-40	40-50	50-60	60-70	70-80			
		Number of students				35	31			
OR										
2	a)	Using Newton-Raphson's Method, find a root of $e^{x} \sin x=1$.						L3	CO 2	7 M
	b)	Using Lagrange's interpolation formula estimate the value of y corresponding to $x=10$ from the following data.						L4	CO4	7 M
		x	5	6		9	11			
		y	12	13		14	16			

6	a)	Prove that the function $\mathrm{u}=\mathrm{e}^{-\mathrm{x}}(\mathrm{x} \operatorname{siny-ycosy)~is~}$ harmonic and find its harmonic conjugate.	L 3	CO 3	7 M
b)	If $f(z)$ is an analytic function of z then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$.	CO.	7 M		

UNIT-IV

7	a)	If $F(\xi)=\oint_{c} \frac{3 z^{2}-6 z+10}{(z-\xi)} d z$, where C is the circle $x^{2}+y^{2}=9$, find the value of $F(3.5)$, $F(i), \quad F^{\prime \prime}(-1)$ and $F^{\prime \prime}(-i)$	L3	CO3	7 M
	b)	Find the Taylor series expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z} \quad$ about the point $z=i$.	L3	CO3	7 M

OR

8	a)	Evaluate $\int_{c}\left(z-z^{2}\right) d z$ where C is the upper half of the circle $\|z\|=1$	L4	CO5	7 M
b)	Expand $f(z)=\frac{z}{(z-1)(z+2)}$ as a series valid in the region (i) $0<\|z\|<1 ; ~($ (ii) $1<\|z\|<2 ;$ (iii) $\|z\|>2$.	CO 3	7 M		

UNIT-V

9	a)		Use $\oint_{c} \frac{\sin r}{(z}$	Residue $\frac{+\cos \pi z^{2}}{2(z-2)} d z$	theorem $c:\|z\|$		evaluate	L4	CO5	7 M

	b)	Use Residue theorem to evaluate $I=\int_{0}^{2 \pi} \frac{d \theta}{3+2 \sin \theta}$	L4	CO5	7 M
OR					
10	a)	State Residue theorem. Hence evaluate $\oint_{c} \frac{\operatorname{Cos} \pi z}{(z+2)(z+5)^{2}} d z$, where $c:\|z\|=3$.	L4	CO 5	7 M
	b)	Use Residue theorem to evaluate $I=\int_{0}^{\infty} \frac{d x}{1+x^{4}}$.	L4	CO5	7 M

