II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER - 2022

NUMERICAL METHODS AND COMPLEX VARIABLES (Common for ECE, EEE)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

								BL	СО	Max. Marks
	UNIT-I									
1	a)	Find a real root of the equation $x \log_{10} x = 1.2$ by					L3	CO2	7 M	
		Regula-Falsi method correct to four decimal					decimal			
		places.								
	b)	From the following data estimate the number of						L4	CO4	7 M
		students wh	o obtair	ned mar	ks betw	een 45	and 50.			
		Marks	30-40	40-50	50-60	60-70	70-80			
		Number of	31	42	51	35	31			
		students								
OR										
2	a)	a) Using Newton-Raphson's Method, find a root of					a root of	L3	CO2	7 M
		$e^x \sin x = 1$.								
	b)						L4	CO4	7 M	
		the value of y corresponding to $x=10$ from the								
		following data.x56911								
		X	$\frac{3}{12}$	13		9 14	11			
		J J	14	15		T	10			

Page 1 of 4

UNIT-II							
UNIT-II3a) The population of a certain town is shown in the following table. Find the rate of growth of population in the year 1961.Year19511961197119811991Population (in thousands)19.9639.6558.8177.2194.61b) Using Euler's method, find an approximate value of y corresponding to x = 1.5, given that	E L3		7 M 7 M				
$\frac{dy}{dx} = x + 2y \text{ and } y = 1 \text{ when } x = 1.$							
OR	T 4		7 M				
4 a) Given that $y = \log x$ and x 4.0 4.2 4.4 4.6 4.8 5.0 5.2 y 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487 Evaluate $\int_{4}^{5.2} logx dx$ by (i) Trapezoidal rule and (ii) Simpson's 1/3 rule. Compare it with exact value.		CO4	/ 1 V1				
b) Using fourth order Runge Kutta Method with $h=0.1$ find $y(0.2)$ from $y' = y - x$ with $y(0) = 2$.	L3	CO2	7 M				
UNIT-III							
5 a) Show that the function $f(z) = \sqrt{ xy }$ is not analytic at the origin even though Cauchy Riemann equations are satisfied thereat.		CO3	7 M				
b) Find an analytic function $f(z)=u+iv$, if $u-v=(x-y)(x^2+4xy+y^2)$.	L3	CO3	7 M				
OR							

6	a)	Prove that the function $u=e^{-x}(xsiny-ycosy)$ is	L3	CO3	7 M				
		harmonic and find its harmonic conjugate.							
	b)	If $f(z)$ is an analytic function of z then prove that	L4	CO5	7 M				
		$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left f(z)\right ^2 = 4 \left f'(z)\right ^2.$							
	UNIT-IV								
7	a)	If $F(\xi) = \oint_C \frac{3z^2 - 6z + 10}{(z - \xi)} dz$, where C is the circle	L3	CO3	7 M				
		$x^{2} + y^{2} = 9$, find the value of $F(3.5)$,							
		F(i), F''(-1) and $F''(-i)$							
	b)	Find the Taylor series expansion of	L3	CO3	7 M				
		$f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point $z = i$.							
	OR								
8	a)	Evaluate $\int_{C} (z - z^2) dz$ where C is the upper half of	L4	CO5	7 M				
		the circle $ z = 1$							
	b)	Expand $f(z) = \frac{z}{(z-1)(z+2)}$ as a series valid in the	L3	CO3	7 M				
		region (i) $0 < z < 1$; (ii) $1 < z < 2$; (iii) $ z > 2$.							
UNIT-V									
9	a)	Use Residue theorem to evaluate	L4	CO5	7 M				
		$\oint_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz \text{ where } c: z = 3$							

	b)	Use Residue theorem to evaluate $I = \int_0^{2\pi} \frac{d\theta}{3+2sin\theta}$	L4	CO5	7 M				
	OR								
10	a)	State Residue theorem. Hence evaluate	L4	CO5	7 M				
		$\oint_{c} \frac{\cos \pi z}{(z+2)(z+5)^2} dz \text{, where } c: z = 3.$							
	b) Use Residue theorem to evaluate $I = \int_0^\infty \frac{dx}{1+x^4}$.				7 M				